
Import Data Files (xlsx, csv) into SQL Server 

using ASP.NET Core 

Table of Contents 

1. Introduction 

2. Prerequisites 

3. Project Overview 

4. Key Features 

5. Implementation Steps 

O Step 1: Create a New ASP.NET Core Web API Project 

O Step 2: Configure Database Connection 

O Step 3: Install Required NuGet Packages 

O Step 4: Model Creation 

O Step 5: File Upload API 

O Step 6: File Validation and Error Handling 

O Step 7: Data Mapping and Transformation 

O Step 8: Data Import Performance Optimization 

6. Screenshots 

7. Conclusion 



1. Introduction 

This documentation outlines the process of importing data files (XLSX and CSV) into a SQL 

Server database using ASP.NET Core 7. The project aims to create a robust and efficient web 

application that provides users with a seamless experience for importing large volumes of data 

from various file formats. 

 

2. Prerequisites 

Before you begin, ensure you have the following prerequisites: 

 Visual Studio or Visual Studio Code 

 .NET 7 SDK 

 SQL Server installed and running 

 Basic knowledge of ASP.NET Core, C#, SQL 

 

3. Project Overview 

The project involves creating a web application with the following technologies and features: 

 ASP.NET Core 7 for building the web API. 

 SQL Server for data storage. 

 XML Bulk Insert for efficient data insertion. 

 Dapper for database operations. 

 CsvHelper for CSV file processing. 

 EPPlus for XLSX file processing. 

 File validation, error handling, and data transformation. 

 

4. Key Features 

XLSX and CSV File Support: The application supports importing data from both XLSX 

and CSV file formats. 



File Validation and Error Handling: Before data import, files are validated for format and 

structure. Detailed error handling provides informative messages to users. 

Mapping and Transformation: Data mapping and transformation allow users to map 

columns from files to database fields and perform necessary transformations during import. 

Data Import Performance Optimization: The application optimizes data import 

performance using XML Bulk Insert and Dapper to efficiently insert large volumes of data into 

the SQL Server database. 

 

5. Implementation Steps 

Step 1: Create a New ASP.NET Core Web API Project 

1. Open Visual Studio or Visual Studio Code. 

2. Create a new ASP.NET Core Web API project targeting .NET 7. 

 

Step 2: Configure Database Connection 

1. Configure a connection string to your SQL Server database. 

 

Step 3: Install Required NuGet Packages 

Install the necessary NuGet packages: 

 CsvHelper 

 EPPlus 

 Dapper 

Use the Package Manager Console or the .csproj file to add these packages to your project. 

 

Step 4: Model Creation 

Create a model class that represents the data you want to import. 

 

Step 5: File Upload API 

Create an API endpoint for file upload. Use [FromForm] to accept files. 



Step 6: File Validation and Error Handling 

Implement file validation and error handling logic within the UploadFile action. 

 Check file size and extension. 

 Provide detailed error messages to the user if validation fails. 

 

Step 7: Data Mapping and Transformation 

Implement data mapping and transformation logic to map columns from the uploaded file to your 

database model. 

 

Step 8: Data Import Performance Optimization 

Optimize data import performance using XML Bulk Insert and Dapper to efficiently insert data 

into the SQL Server database. 

 

6. Screenshots 

Fig: View Data File 

 



Fig: API 

 

Fig: Table with Imported Data 

 



Fig: Solution Explorer 

 

 

7. Conclusion 

This documentation has provided a detailed overview of creating a web application to import 

data files (XLSX and CSV) into a SQL Server database using ASP.NET Core 7. By following 

the outlined steps and utilizing the mentioned technologies and features, you can build a robust 

and efficient data import system tailored to your needs. Remember to implement proper error 

handling and data validation to ensure the reliability of your application. 


